55 research outputs found

    An Update on Tectonics

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109300/1/eost2014EO420009.pd

    Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada

    Get PDF
    We use a short-baseline network of braced monuments to investigate site-specific GPS effects. The network has baseline lengths of ∼10, 100, and 1000 m. Baseline time series have root mean square (RMS) residuals, about a model for the seasonal cycle, of 0.05–0.24 mm for the horizontal components and 0.20–0.72 mm for the radial. Seasonal cycles occur, with amplitudes of 0.04–0.60 mm, even for the horizontal components and even for the shortest baselines. For many time series these lag seasonal cycles in local temperature measurements by 23–43 days. This could suggest that they are related to bedrock thermal expansion. Both shorter-period signals and seasonal cycles for shorter baselines to REP2, the one short-braced monument in our network, are correlated with temperature, with no lag time. Differences between REP2 and the other stations, which are deep-braced, should reflect processes occurring in the upper few meters of the ground. These correlations may be related to thermal expansion of these upper ground layers, and/or thermal expansion of the monuments themselves. Even over these short distances we see a systematic increase in RMS values with increasing baseline length. This, and the low RMS levels, suggests that site-specific effects are unlikely to be the limiting factor in the use of similar GPS sites for geophysical investigations

    Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years

    Get PDF
    The Wasatch fault and adjacent fault zones provide an opportunity to compare present-day deformation rate estimates obtained from space geodesy with geologic displacement rates over at least four temporal windows, ranging from the last millennium up to 10 Myr. The three easternmost GPS sites of the Basin and Range Geodetic Network (BARGEN) at this latitude define a ∼130-km-wide region spanning three major normal faults extending east-west at a total rate of 2.7 ± 0.4 mm/yr, with an average regional strain rate estimated to be 21 ± 4 nstrain/yr, about twice the Basin and Range average. On the Wasatch fault, the vertical component of the geologic displacement rate is 1.7 ± 0.5 mm/yr since 6 ka, <0.6 mm/yr since 130 ka, and 0.5–0.7 mm/yr since 10 Ma. However, it appears likely that at the longest timescale, rates slowed over time, from 1.0 to 1.4 mm/yr between 10 and 6 Ma to 0.2 to 0.3 mm/yr since 6 Ma. The cumulative vertical displacement record across all three faults also shows time-variable strain release ranging from 2 to 4 mm/yr since 10 ka to <1 mm/yr averaged over the past 130 kyr. Conventional earthquake recurrence models (“Reid-type” behavior) would require an accordingly large variation in strain accumulation or loading rate on a 10-kyr timescale, for which there appears to be no obvious geophysical explanation. Alternatively, seismic strain release, given a wide range of plausible constitutive behaviors for frictional sliding, may be clustered on the 10-kyr timescale, resulting in the high Holocene rates, with comparatively low, uniform strain accumulation rates on the 100-kyr timescale (“Wallace-type” behavior). The latter alternative, combined with observations at the million-year timescale and the likelihood of a significant contribution of postseismic transients, implies maxima of spectral amplitude in the velocity field at periods of ∼10 Myr (variations in tectonic loading), ∼10 kyr (clustered strain release), and of 100 years (postseismic transients). If so, measurements of strain accumulation and strain release may be strongly timescale-dependent for any given fault system

    A Cretaceous‐Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau

    Full text link
    The Fenghuoshan Group marks the initiation of terrestrial deposition in the Hoh Xil Basin and preserves the first evidence of uplift above sea level of northern Tibet. The depositional age of the Fenghuoshan Group is debated as are the stratigraphic relationships between the Fenghuoshan Group and other terrestrial sedimentary units in the Hoh Xil Basin. We present new radiometric dates and a compilation of published biostratigraphic data which are used to reinterpret existing magnetostratigraphic data from the Fenghuoshan Group. From these data, we infer an 85–51 Ma depositional age range for the Fenghuoshan Group. U‐Pb detrital zircon age spectra from this unit are compared to age spectra from Tibetan terranes and Mesozoic sedimentary sequences to determine a possible source terrane for Fenghuoshan Group strata. We propose that these strata were sourced from the Qiangtang Terrane and may share a common sediment source with Cretaceous sedimentary rocks in Nima Basin. Field relationships and compiled biostratigraphic data indicate that the Fenghuoshan and Tuotuohe Groups are temporally distinct units. We report late Oligocene ages for undeformed basalt flows that cap tilted Fenghuoshan Group strata. Together, our age constraints and field relationships imply exhumation of the central Qiangtang Terrane from the Late Cretaceous to earliest Eocene, followed by Eocene‐Oligocene deformation, and shortening of the northern Qiangtang and southern Songpan‐Ganzi terranes. Crustal shortening within the Hoh Xil Basin ceased by late Oligocene time as is evident from flat‐lying basaltic rocks, which cap older, deformed strata. Key Points The Fenghuoshan Group was deposited from late Cretaceous to early Eocene time The Fenghuoshan Group was likely sourced from the central Qiangtang Terrane Crustal shortening of the Hoh Xil Basin occurred from Eocene to Oligocene timePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/1/ts02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/2/fs02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/3/tect20113.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/4/ts06.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/5/fs06.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/6/ts03.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/7/fs03.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/8/ts07.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/9/fs07.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/10/fs04.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/11/ts04.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/12/fs01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/13/ts08.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/14/ts01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/15/fs05.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/16/ts05.pd

    Insights from low‐temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, California

    Full text link
    The San Emigdio Mountains are an example of an archetypical, transpressional structural system, bounded to the south by the San Andreas strike‐slip fault, and to the north by the active Wheeler Ridge thrust. Apatite (U‐Th)/He and apatite and zircon fission track ages were obtained along transects across the range and from wells in and to the north of the range. Apatite (U‐Th)/He ages are 4–6 Ma adjacent to the San Andreas fault, and both (U‐Th)/He and fission track ages grow older with distance to the north from the San Andreas. The young ages north of the San Andreas fault contrast with early Miocene (U‐Th)/He ages from Mount Pinos on the south side of the fault. Restoration of sample paleodepths in the San Emigdio Mountains using a regional unconformity at the base of the Eocene Tejon Formation indicates that the San Emigdio Mountains represent a crustal fragment that has been exhumed more than 5 km along the San Andreas fault since late Miocene time. Marked differences in the timing and rate of exhumation between the northern and southern sides of the San Andreas fault are difficult to reconcile with existing structural models of the western Transverse Ranges as a thin‐skinned thrust system. Instead, these results suggest that rheologic heterogeneities may play a role in localizing deformation along the Big Bend of the San Andreas fault as the San Emigdio Mountains are compressed between the crystalline basement of Mount Pinos and oceanic crust that underlies the southern San Joaquin Valley. Key Points There is Pliocene exhumation of the western Transverse Ranges Localization of deformation may be controlled by lithospheric strength Strain is partitioned between the San Andreas and regional thrustsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102707/1/tect20096.pd

    Perspectives on Continental Rifting Processes From Spatiotemporal Patterns of Faulting and Magmatism in the Rio Grande Rift, USA

    Full text link
    Analysis of spatiotemporal patterns of faulting and magmatism in the Rio Grande rift (RGR) in New Mexico and Colorado, USA, yields insights into continental rift processes, extension accommodation mechanisms, and rift evolution models. We combine new apatite (U‐Th‐Sm)/He and zircon (U‐Th)/He thermochronometric data with previously published thermochronometric data to assess the timing of fault initiation, magnitudes of fault exhumation, and growth and linkage patterns of rift faults. Thermal history modeling of these data reveals contemporaneous rift initiation at ca. 25 Ma in both the northern and southern RGR with continued fault initiation, growth, and linkage progressing from ca. 25 to ca. 15 Ma. The central RGR, however, shows no evidence of Cenozoic fault‐related exhumation as observed with thermochronometry and instead reveals extension accommodated through Late Cenozoic magmatic injection. Furthermore, faulting in the northern and southern RGR occurs along an approximately north‐south strike, whereas magmatism in the central RGR occurs along the northeast to southwest trending Jemez lineament. Differences in deformation orientation and rift accommodation along strike appear to be related to crustal and lithospheric properties, suggesting that rift structure and geometry are at least partly controlled by inherited lithospheric‐scale architecture. We propose an evolutionary model for the RGR that involves initiation of fault‐accommodated extension by oblique strain followed by block rotation of the Colorado Plateau, where extension in the RGR is accommodated by faulting (southern and northern RGR) and magmatism (central RGR). This study highlights different processes related to initiation, geometry, extension accommodation, and overall development of continental rifts.Plain Language SummaryWe identify patterns of faulting and volcanism in the Rio Grande rift (RGR) in the western United States to better understand how continental rifts evolve. Using methods for documenting rock cooling ages (thermochronology), we determined that rifting began around 25 million years ago (Ma) in both the northern and southern RGR. Rift faults continued to develop and grow for another 10 to 15 million years. The central RGR, however, shows that rift extension occurred through volcanic activity both as eruptions at the surface and as magma injection below the surface since ~15 Ma. Interestingly, RGR faulting in the north and south parts of the rift occurs on a north‐south line, while volcanism in the central RGR is along a northeast to southwest line. The differences in the location and orientation of faulting and volcanic activity may be related to the thickness of the lithosphere beneath different parts of the rift. Using these patterns of faulting and magmatism, we propose the RGR evolved through a combination of (1) oblique strain—extension diagonal to the rift and (2) block rotation—where the Colorado Plateau is the rotating block. This detailed study highlights different processes related to the accommodation of extension and the overall development of continental rifts.Key PointsInitiation of the Rio Grande rift appears to be synchronous ~25 Ma and does not support a northward propagation modelExtension is accommodated by faulting in the northern and southern Rio Grande rift and by magmatic injection in the central Rio Grande riftDifferent rift accommodation mechanisms may be controlled by preexisting weaknesses and lithospheric properties (i.e., thickness)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/1/tect21226.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/2/wrcr21226-sup-00001-2019TC005635-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/3/tect21226_am.pd

    Active megadetachment beneath the western United States

    Get PDF
    Geodetic data, interpreted in light of seismic imaging, seismicity, xenolith studies, and the late Quaternary geologic history of the northern Great Basin, suggest that a subcontinental-scale extensional detachment is localized near the Moho. To first order, seismic yielding in the upper crust at any given latitude in this region occurs via an M7 earthquake every 100 years. Here we develop the hypothesis that since 1996, the region has undergone a cycle of strain accumulation and release similar to “slow slip events” observed on subduction megathrusts, but yielding occurred on a subhorizontal surface 5–10 times larger in the slip direction, and at temperatures >800°C. Net slip was variable, ranging from 5 to 10 mm over most of the region. Strain energy with moment magnitude equivalent to an M7 earthquake was released along this “megadetachment,” primarily between 2000.0 and 2005.5. Slip initiated in late 1998 to mid-1999 in northeastern Nevada and is best expressed in late 2003 during a magma injection event at Moho depth beneath the Sierra Nevada, accompanied by more rapid eastward relative displacement across the entire region. The event ended in the east at 2004.0 and in the remainder of the network at about 2005.5. Strain energy thus appears to have been transmitted from the Cordilleran interior toward the plate boundary, from high gravitational potential to low, via yielding on the megadetachment. The size and kinematic function of the proposed structure, in light of various proxies for lithospheric thickness, imply that the subcrustal lithosphere beneath Nevada is a strong, thin plate, even though it resides in a high heat flow tectonic regime. A strong lowermost crust and upper mantle is consistent with patterns of postseismic relaxation in the southern Great Basin, deformation microstructures and low water content in dunite xenoliths in young lavas in central Nevada, and high-temperature microstructures in analog surface exposures of deformed lower crust. Large-scale decoupling between crust and upper mantle is consistent with the broad distribution of strain in the upper crust versus the more localized distribution in the subcrustal lithosphere, as inferred by such proxies as low P wave velocity and mafic magmatism
    corecore